Search results for " method of fundamental solutions"

showing 4 items of 4 documents

Bio-electromagnetic Numerical Modeling for Health Diagnostics

Settore ING-IND/31 - ElettrotecnicaSettore MAT/08 - Analisi Numericabioelectromagnetic fields bioelectromagnetism numerical methods medical imaging neuroimaging brain activity electroencephalography magnetoencephalography EEG MEG meshfree meshless method of fundamental solutionscampi bioelettromagnetici bioelettromagnetismo metodi numerici diagnostica per immagini attività cerebrale elettroencefalografia magnetoencefalografia metodo delle soluzioni fondamentali
researchProduct

The Method of Fundamental Solutions in Solving Coupled Boundary Value Problems for M/EEG

2015

The estimation of neuronal activity in the human brain from electroencephalography (EEG) and magnetoencephalography (MEG) signals is a typical inverse problem whose solution pro- cess requires an accurate and fast forward solver. In this paper the method of fundamental solutions is, for the first time, proposed as a meshfree, boundary-type, and easy-to-implement alternative to the boundary element method (BEM) for solving the M/EEG forward problem. The solution of the forward problem is obtained by numerically solving a set of coupled boundary value problems for the three-dimensional Laplace equation. Numerical accuracy, convergence, and computational load are investigated. The proposed met…

Laplace's equationQuantitative Biology::Neurons and Cognitionmedicine.diagnostic_testApplied MathematicsPhysics::Medical PhysicsMathematical analysisMagnetoencephalographyInverse problemElectroencephalographySettore MAT/08 - Analisi NumericaSettore ING-IND/31 - ElettrotecnicaComputational MathematicsConvergence (routing)medicineMethod of fundamental solutionsBoundary value problemkernel-based methods method of fundamental solutions EEG MEGBoundary element methodMathematicsSIAM Journal on Scientific Computing
researchProduct

A Meshfree Solver for the MEG Forward Problem

2015

Noninvasive estimation of brain activity via magnetoencephalography (MEG) involves an inverse problem whose solution requires an accurate and fast forward solver. To this end, we propose the Method of Fundamental Solutions (MFS) as a meshfree alternative to the Boundary Element Method (BEM). The solution of the MEG forward problem is obtained, via the Method of Particular Solutions (MPS), by numerically solving a boundary value problem for the electric scalar potential, derived from the quasi-stationary approximation of Maxwell’s equations. The magnetic field is then computed by the Biot-Savart law. Numerical experiments have been carried out in a realistic single-shell head geometry. The p…

Computer scienceBiomagnetics magnetoencephalography (MEG) method of fundamental solutions (MFS) meshfree methodsScalar potentialInverse problemSolverBoundary knot methodElectronic Optical and Magnetic MaterialsSettore ING-IND/31 - ElettrotecnicaSettore MAT/08 - Analisi NumericaClassical mechanicsApplied mathematicsMethod of fundamental solutionsBoundary value problemElectrical and Electronic EngineeringBoundary element method
researchProduct

An Improved Solver for the M/EEG Forward Problem

2014

Noninvasive investigation of the brain activity via electroencephalography (EEG) and magnetoencephalography (MEG) involves a typical inverse problem whose solution process requires an accurate and fast forward solver. We propose the Method of Fundamental Solutions (MFS) as a truly meshfree alternative to the Boundary Element Method (BEM) for solving the M/EEG forward problem. The solution of the forward problem is obtained, via the Method of Particular Solutions (MPS), by numerically solving a set of coupled boundary value problems for the 3D Laplace equation. Numerical accuracy and computational load are investigated for spherical geometries and comparisons with a state-of-the-art BEM solv…

Settore ING-IND/31 - ElettrotecnicaSettore MAT/08 - Analisi NumericaEEG MEG method of fundamental solutions meshfree methods
researchProduct