Search results for " method of fundamental solutions"
showing 4 items of 4 documents
Bio-electromagnetic Numerical Modeling for Health Diagnostics
The Method of Fundamental Solutions in Solving Coupled Boundary Value Problems for M/EEG
2015
The estimation of neuronal activity in the human brain from electroencephalography (EEG) and magnetoencephalography (MEG) signals is a typical inverse problem whose solution pro- cess requires an accurate and fast forward solver. In this paper the method of fundamental solutions is, for the first time, proposed as a meshfree, boundary-type, and easy-to-implement alternative to the boundary element method (BEM) for solving the M/EEG forward problem. The solution of the forward problem is obtained by numerically solving a set of coupled boundary value problems for the three-dimensional Laplace equation. Numerical accuracy, convergence, and computational load are investigated. The proposed met…
A Meshfree Solver for the MEG Forward Problem
2015
Noninvasive estimation of brain activity via magnetoencephalography (MEG) involves an inverse problem whose solution requires an accurate and fast forward solver. To this end, we propose the Method of Fundamental Solutions (MFS) as a meshfree alternative to the Boundary Element Method (BEM). The solution of the MEG forward problem is obtained, via the Method of Particular Solutions (MPS), by numerically solving a boundary value problem for the electric scalar potential, derived from the quasi-stationary approximation of Maxwell’s equations. The magnetic field is then computed by the Biot-Savart law. Numerical experiments have been carried out in a realistic single-shell head geometry. The p…
An Improved Solver for the M/EEG Forward Problem
2014
Noninvasive investigation of the brain activity via electroencephalography (EEG) and magnetoencephalography (MEG) involves a typical inverse problem whose solution process requires an accurate and fast forward solver. We propose the Method of Fundamental Solutions (MFS) as a truly meshfree alternative to the Boundary Element Method (BEM) for solving the M/EEG forward problem. The solution of the forward problem is obtained, via the Method of Particular Solutions (MPS), by numerically solving a set of coupled boundary value problems for the 3D Laplace equation. Numerical accuracy and computational load are investigated for spherical geometries and comparisons with a state-of-the-art BEM solv…